
White Paper

MCU VIRTUALIZATION
THE L4Re
MICRO HYPERVISOR
Employing Virtualization on MPU-based Processors

Jan Klötzke, Dr.-Ing. Adam Lackorzynski | Kernkonzept GmbH

MCU Virtualization - The L4Re Micro Hypervisor / Copyright  © 2023 by Kernkonzept 2 of 15

Introduction 03

1. Virtualization-enabled real-time MCUs 04

2. Challenges for Hypervisor Architecture 06

3. L4Re Hypervisor and L4Re Micro Hypervisor for MPU
for maximum Flexibility 07

3.1 The L4Re Micro Hypervisor for small-scale System Architectures 09

3.2 The L4Re Hypervisor for high-end System Architectures 10

3.3 Use Case specific Tailoring 11

3.3.1 Use Case: Automotive ECU with multiple VMs 12

3.3.2 Use Case: Heterogeneous Automotive SoC 13

3.3.3 Use Case: Storage Controller 14

Conclusion 15

MCU Virtualization - The L4Re Micro Hypervisor / Copyright  © 2023 by Kernkonzept

solutions. This is partially driven by
the desire to reuse existing ECU soft-
ware stacks and deploy them almost
unchanged in virtual machines on
controllers along with other virtual
ECUs. In the realm of automotive HPC
systems, the utilization of virtualiza-
tion is considered best practice and is
used already on a broad scale.

Another requirement is the freedom
of interference between different
safety related functions. Hypervisors
are the state-of-the-art solution to
partition a shared system through
virtualization, so that designers can
ensure individual functions are se-
parated in time and space while still
meeting real-time and safety require-
ments.

This also applies to other safety and
real-time critical application fields
like medical devices and avionics.
By using a hypervisor, a system can
be partitioned into isolated parts,
ensuring safety and non-interference
while also enabling convenience
functions.

HARDWARE CONSOLI-
DATION IN AUTOMOTIVE
BY VIRTUALIZATION

Figure 1: Automotive ECU Architecture Roadmap

The automotive industry is faced
with the challenge that an ever-in-
creasing share of the product value
is defined by software. This has led to
the growth of electronic control units
(ECUs) that are deployed in a vehicle.
It also implies that more and more
software defined functions are safety
critical and must be designed accor-
ding to functional safety standards
such as ISO26262.

Nowadays it is not uncommon that
a car sports well over 100 individual
ECUs. This number has been steadily
increasing for many years. To counter
the associated costs, weight, and phy-
sical space requirements, the industry
is moving towards a more centralized
compute approach: Several adjacent
ECUs are consolidated into more
capable “zonal controllers”, which
brings down the average cost per
function.

As these previously physically separa-
ted applications now share the
same computing resources, there is
an increased need for virtualization

• Automotive soft-

ware challenge:

growth of ECUs and

safety critical func-

tions

• Centralizing com-

pute approach lowers

average cost per

function

• Virtualization is

broadly used in HPC

systems

• Freedom of interfe-

rence between safety-

related functions re-

quired

• Hypervisors are

state-of-the-art

solution for partitio-

ning shared systems

through virtualization

3 of 15

MCU Virtualization - The L4Re Micro Hypervisor / Copyright  © 2023 by Kernkonzept

1. VIRTUALIZATION-ENABLED
REAL-TIME MCUs

To meet the demands of automotive
and storage designers, Arm has
defined the Armv8-R architecture to
enable virtualization for MPU-based
processors. To understand the unique
design challenges of these systems, let
us first examine the coarse architec-
ture of a hypervisor. Figure 2 shows
the common system architecture, as it
is currently used in general-purpose
computing.

The hypervisor must multiplex the
access of multiple guests (depicted
as “VM 1 to 4” in the above figure) to
the underlying hardware resources.
Additionally, the hypervisor has to
emulate a virtual machine model
towards the guest. The component
which provided this virtual ma-
chine model is usually called „virtual

machine monitor“ (VMM). The guest
operating system interacts with the
virtual machine model and is un-
aware of any other virtual machines
executing in parallel. Access to hard-
ware resources is always mediated by
the hypervisor, either by giving selec-
tive access to hardware resources or
by emulating devices in software.

From a system architecture perspec-
tive, the Armv8-R architecture has to
cover a wide range of the memory
and computational resource spec-
trum. Effectively, there are two ends
of the performance and resource
spectrum that are addressed by two
sub-architectures:

Figure 2: Generic Hypervisor System Architecture

CPU / Memory / Storage / Network

VM 1 VM 2 VM 3 VM 4

Hypervisor / VMM

• Armv8-R architec-

ture enables virtuali-

zation for MPU-based

processors

• Hypervisor manages

access to hardware for

multiple guests, emu-

lates virtual machine

model by VMM

• Performance and

resource spectrum

addressed by 2 sub-

architectures

4 of 15

MCU Virtualization - The L4Re Micro Hypervisor / Copyright  © 2023 by Kernkonzept 5 of 15

+ Armv8-R AArch32: 32-bit CPUs for
smaller systems with typically just a
few megabytes of memory. This is
the domain of embedded MCUs
typically found in automotive ECUs.
The Cortex-R52 is the first imple-
mentation of this architecture. It is
beginning to be widely employed in
the automotive industry.

+ Armv8-R AArch64: While still
meeting real-time demands, these
systems have much more memory
available, typically in the range of
gigabytes. These 64-bit CPUs also
have much more computing power.
Arm has announced the Cortex-R82
processor as the first implementation.

Both sub-architectures use the same
underlying building blocks to enable
virtualization in real-time systems. By
and large, the virtualization support
of the Armv8-A architecture is carried
over almost unchanged. Meanwhile, a
second – nested – MPU controlled by
the hypervisor has been introduced
into the architecture system.

This architecture is shown in Figure 3:

Figure 3: Armv8-R Virtualization Architecture

• Arm Cortex-R52 first

implementation of

embedded MCUs in

automotive ECUs

• Arm Cortex-R82

announced as first im-

plementation of 64-bit

CPU

• Armv8-A architec-

ture uses same virtuali-

zation support in both

subarchitectures

• Newly introduced:

second MPU, cont-

rolled by hypervisor

Memory

App App

RTOS

App App

MPU LinuxMMU

MPU
Added by
Armv8-R

Armv8-R
AArch64
specific

Hypervisor

MCU Virtualization - The L4Re Micro Hypervisor / Copyright  © 2023 by Kernkonzept

2. CHALLENGES FOR
HYPERVISOR
ARCHITECTURE

Due to the resource constraints
of MCUs that use the Armv8-R
AArch32 architecture, off-the-shelf
hypervisors such as KVM or Xen
are not suitable, even if they would
be adapted to this Armv8-R profile.
Their reliance on the availability of
an MMU and their memory footprint
make them impossible to use on this
kind of systems.

On the other hand, it is common for
high-end automotive systems to
combine Cortex-A compute clusters
and Cortex-R real-time cores. A com-
mon hypervisor architecture is
desirable that includes support for
both MPU and MMU based systems.
As hardware and software systems
evolve, the deployment of software
components will change, too. A sca-
lable hypervisor should therefore
provide common APIs on all systems
to enable easy migration of work-
loads.

This leaves three options for more
specialized hypervisors to cover the
full range of the Armv8-A/R archi-
tecture:

+ A small, bare-metal architecture:

Socalled “separation kernels” can also
be counted under this architecture.
This implies a limited feature set that
might not be able to support all use
cases on the upper end of the resource
spectrum.

+ Two implementations: Each one
would target the different ends of the
resource spectrum. This approach
induces additional complexity and
costs.

+ A scalable architecture that sup-
ports both AArch32 and AArch64, as
well as MPU and MMU based systems.
This is the desired approach from a
software-architectural and mainte-
nance view because it delivers
flexibility and reduced system
complexity. On the other hand this
poses significant challenges to meet
the low-end resource requirements.

• Off-the-shelf

hypervisors impossible

to use with Armv8-R

AArch32 architecture

• Common hypervisor

architecture should

combine Cortex-A and

Cortex-R

• A scalable hypervisor

delivers flexibility and

reduced system com-

plexity

6 of 15

MCU Virtualization - The L4Re Micro Hypervisor / Copyright  © 2023 by Kernkonzept

3. L4Re HYPERVISOR &
MICRO HYPERVISOR FOR
MAXIMUM FLEXIBILITY

A scalable solution that covers the full
range of the Armv8-A and -R archi-
tectures can be achieved with a small,
microkernel-based system, like the
L4Re Operating System Framework.

The L4Re Hypervisor and L4Re Micro
Hypervisor are part of the L4Re OS
Framework, which builds upon the
L4Re Microkernel, the L4Re OS
Libraries, the L4Re Core Foundation,
the L4Re Application services, and the
L4Re OS services – several user-level
components and libraries, allowing for
use cases that focus on security, safety,
real-time, or any combination thereof.

The L4Re Operating System Framework
provides specialized components for
the various tasks in a system. Because
of conflicting requirements (e.g. size
vs. features), two specialized implemen-
tations of selected components exist,
e.g. the VMM. These can be deployed in
a very flexible way to create tailored
systems for the specific use case.

Depending on the requirements of the
customer, the components can be
employed as L4Re Hypervisor or L4Re
Micro Hypervisor.

Figure 4: The L4Re Operating System Framework: a flexible Toolkit for tailor-made Software Solutions

Figure 5: L4Re Operating System and Hypervisor Framework

• L4Re Operating

System for security,

safety, and real-time

focusing use cases

• 2 specialised com-

ponents provided for

conflicting require-

ments: employable as

L4Re Hypervisor or L4Re

Micro Hypervisor

Operating
System
Libraries

Core
Foundation

Application
Services

L4Re
Microkernel

Operating
System
Services

Services

Your tailor-made
Operating System /

Hypervisor

7 of 15

MCU Virtualization - The L4Re Micro Hypervisor / Copyright  © 2023 by Kernkonzept

The state-of-the-art L4Re Microkernel
is the foundation of both the L4Re
Hypervisor and the L4Re Micro
Hypervisor. It is a crucial piece of the
architecture, which provides access-
control by object capabilities. It is the
only component running in kernel-
privilege mode of the processor.

While the microkernel only imple-
ments mechanisms, functionality is
built by user-level components
running on the system. This design
allows to build applications and use
cases with tailored minimal trusted
computing bases (TCBs), providing
secure, safe, and realtime applications.

Virtualization is a crucial functionality
of the system, and its implementation
is split in two parts. The microkernel
implements functionality concerned
with so-called world switching and
thus isolation, while a virtual machine
monitor (VMM) implements the
virtual platform presented to guest
OSs. A typical design is to run one
VMM per VM to ensure isolation

between different VMs running
parallel on the system. However, a
single VMM can also host multiple VMs.

Compared to other hypervisors, L4Re
provides a vastly reduced TCB (see
figure 6). This makes it easier to obtain
safety and security certifications for
systems built with L4Re. Functionality
that does not have to be co-located is
separated into different components.
That way, the microkernel can enforce
their separation.

In a standard setup of the L4Re system,
there is a root task that owns all the
resources (memory, CPUs) of the sys-
tem. Another task is then responsible
for starting applications and virtual
machines, acquiring the required
resources from the root task, and assig-
ning them to the different tasks in the
system as needed.

This hierarchical delegation of
resources is key to partitioning the
system in a reliable and traceable way.

Figure 6: Trusted Computing Bases compared: L4Re Hypervisor versus Monolithic Hypervisors

MERCURY
L4Re Hypervisor

- Ratio of 30 000 lines of code

- TCB code is being checked

SUN

Monolithic Hypervisor

- > 10 000 000 lines of code (e.g. Linux)

- Fault-prone: 7 bugs per 1 000 lines of code

• State-of-the-art L4Re

Microkernel with object

capabilities & dedicated

VMM

• User-level compo-

nents allow tailored

designs for different use

cases

• Very small TCB makes

obtaining safety and

security certifications

for L4Re systems easier

8 of 15

MCU Virtualization - The L4Re Micro Hypervisor / Copyright  © 2023 by Kernkonzept

3.1 The L4Re Micro
Hypervisor for
small-scale System
Architectures

Small-scale MPU systems (Armv8-R
AArch32 – Cortex R52) typically only
have a few megabytes of memory to
host the hypervisor and the VMs with
their actual applications. Additionally,
platforms provide multiple processor
cores that need to be managed by the
hypervisor. Such systems usually have
an almost static setup. The only typi-
cal exception are updates based on
A/B schemes, where a different image
is loaded on the next boot after a suc-
cessful update.

Given the static setup and the tight
resource constraints, the system initi-
alization is consolidated into a single
task called tinit. It unites the jobs of
several components to save precious
resources by trading it with the (in
this use case unnecessary) isolation of
these components. Likewise, a specia-
lized virtual machine monitor variant
named tvmm is used.

Tinit processes a small text-based
configuration file to launch an app-
lication with its shared memory
regions, and it also launches tvmm.
The individual VMs are also defined
within this file, through descriptions
of the RAM range the VM uses, the
device interrupts and priorities, the
MMIO regions, and the payload to
load into each VM. In this way, the
system setup is exclusively handled
in the tinit process and tvmm is solely
responsible for running the VMs.

Tvmm is capable of hosting one or
more VMs. Because its setup is done
solely by tinit, it requires minimal
code to support the execution of the
guests. The listing below shows an
example of a tinit configuration file
where one tvmm instance is started
that hosts two VMs.

Based on the non-functional require-
ments of the system, the designer can
choose the optimal balance of iso-
lation and resource usage.

Figure 7: L4Re Micro Hypervisor Example on Cortex-R52

• Tinit process handles

system setup, uniting

several components

• Tvmm is hosting

VMs, requiring minimal

code

• Optimal balance of

isolation and resource

usage

9 of 15

Watchdog Monitoring

OTA
AUTOSAR

Z
ep

h
yr

Fr
e

e
R

T
O

S

L4Re µHV L4Re µHV L4Re µHV L4Re µHV

tinit tinit tinit init

tvmm tvmm

Memory, Devices

Cortex R52Cortex R52Cortex R52 Cortex R52

MCU Virtualization - The L4Re Micro Hypervisor / Copyright  © 2023 by Kernkonzept

3.2 The L4Re Hypervisor
for high-end System
Architectures

On the high end of the resource spec-
trum (Armv8-R AArch64 – Cortex
R82), memory is not a scarce resource.
These systems are used for compu-
tation-intensive tasks. They can host
multiple, fully featured Linux VMs
and real-time operating systems. Some
of these VMs may even be provisioned
dynamically. These kinds of setup are
well supported by the L4Re Hypervisor
when running on the Armv8-A archi-
tecture. Thanks to the common L4Re
APIs, all L4Re Hypervisor components
also work on Armv8-Rbased devices.

The standard VMM in the L4Re
Hypervisor, uvmm, has been extended
to also support MPU-based guests. It is

possible to run guests like FreeRTOS or
Zephyr in virtual machines as well.
Uvmm targets general-purpose guest
operating systems and is designed to
cover common use cases, from high-
performance embedded to cloud
scenarios. It is highly configurable and
offers multiple features:

· modular design
· pass-through and emulated
devices

· support for VirtIO and VirtIO
devices

· virtual PCIe
· suspend/resume support
· device tree support, augmenting
the device tree for the guest

· support for UEFI
· multi-core guest support
· a monitor interface to control
and inspect the VM state

start tvmm
define high-priority Zephyr VM
defvm zephyr 0x80

ram 0x34800000 0x100000
shm 0x34a00000 0x800 # shared with

FreeRTOS VM
mmio 0x25a00000 0x10000
mmio 0x25610000 0x10000
irq 40
irq 41
irq 48
irq-priorities 0 0x7f
load zephyr_image

 end
define low priority FreeRTOS VM
defvm freertos 0x10

ram 0x34900000 0x100000
shm 0x34a00000 0x800 # shared with

Zephyr VM
load freertos_image
irq-priorities 0 0x0f

 end
end

• L4Re Hypervisor on

Armv8-A and Armv8-R

architecture supports

realtime OS and fully

featured Linux VMs

• uvmm in L4Re Hy-

pervisor also supports

MPU-based guests

(FreeRTOS, Zephyr)

10 of 15

MCU Virtualization - The L4Re Micro Hypervisor / Copyright  © 2023 by Kernkonzept 11 of 15

This approach allows for a very flexi-
ble definition of the virtual machine.
It allows execution of an unmodified
guest, which is especially crucial for
operating systems that were running
directly on a compatible MPU plat-
form.

3.3 Use Case specific
Tailoring

Thanks to the modular nature of the
L4Re Operating System Framework,
the choice of components is up to the
system designer. Because the APIs are
common, the above components can
be mixed and matched between the
different profiles, as required by the
system architecture.

The standard application to bring up
the system is called ned in the L4Re
Framework. It parses a Lua script to
spawn the desired components in the
system. As an interpreted language,
Lua allows for almost unlimited free-
dom of configuration. Despite merely
creating VMs, it is possible to act upon
termination of a VM, regardless of a
VM crashing, rebooting, or shutting
down.

The listing below shows a simplified
excerpt of an example system configu-
ration. It starts two VMs that are then
executed concurrently in the same
core(s). The virtual machine itself
presented to the guest is defined by the
device tree passed by the “fdt” argu-
ment.

vmm.start_vm({
id = 1,
mem = 128,
rd = „rom/ramdisk-armv8-64.cpio.gz“,
fdt = „rom/uvmm_arm_virt-64.dtb“,
bootargs = „console=hvc0 earlyprintk=1“,
kernel = „rom/Image.gz“,

});
vmm.start_vm({

id = 2,
mem = 32,
kernel = „rom/FreeRTOS.elf“,
fdt = „rom/uvmm_freertos.dtb“,

});

• Modular L4Re OS

Framework with com-

mon APIs gives system

designers choice of

components, as re-

quired by use case

MCU Virtualization - The L4Re Micro Hypervisor / Copyright  © 2023 by Kernkonzept

3.3.1 Use Case: Automotive

ECU with multiple VMs

With a virtualization-capable platform
you can integrate multiple applica-
tions into a single ECU (Electronic
Control Unit). The applications are
safely and securely separated from
each other to avoid interference. This
enables the design of zonal ECUs,
running multiple logical ECUs on one
physical ECU (see Figure 8).

By employing virtualization techni-
ques, you maximize legacy reuse with
minimal development effort. Reducing

the number of physical ECUs drives
down the overall energy use, the wi-
ring, and the complexity of the vehicle.

The L4Re Micro Hypervisor provides
all required functions to isolate the
various workloads and to guarantee
freedom from interference. By moving
the previously physical ECUs into VMs,
the investment into the existing soft-
ware stack can be retained and made
independent from the underlying
hardware platform. Additionally, it
enables smooth migration of the VMs
into future ECUs that are even more
capable.

Figure 8: ECU consolidation: Multiple separate ECUs are co-located into a single zonal ECU

Seat
Control VM

Mirror
Control VM

Interior
Light

Control VM

tvmm

L4Re Micro Hypervisor

Seat
Control

ECU

Mirror
Control

ECU

Interior
Light

Control
ECU

Zonal ECU

12 of 15

MCU Virtualization - The L4Re Micro Hypervisor / Copyright  © 2023 by Kernkonzept

Figure 9: Heterogeneous SoC with L4Re Hypervisor and Micro Hypervisor

L4Re Runtime
Environment L4Re Runtime

Environment

R
T

O
S

 2

R
T

O
S

 1

L4Re Hypervisor

Multi-Core CPU with MPU

L4Re Micro Hypervisor

Multi-Core CPU with MMU

Memory, Devices

FLEXIBLE DEPLOYMENT

3.3.2 Use Case:

Heterogeneous Automotive SoC

With ever growing integration,
automotive SoCs are a composition of
different, specialized subsystems. This
typically includes throughput-oriented,
high-performance CPUs with
MMU on one side and real-time
capable CPUs for latency and safety
critical workloads on the other side.
Both subsystems are interconnected
and realize different parts of the ECU

functionality. Where individual
software components are deployed
depends on the specific requirements,
but also on resource availability.

The L4Re Framework provides com-
mon APIs across all systems. This ar-
chitecture enables the flexible deploy-
ment of components in the SoC. You
could also migrate workloads between
different kind of processing units,
MPU-based or MMU-based, if require-
ments allow for such variance.

13 of 15

• L4Re Micro

Hypervisor guarantees

freedom from inter-

ference in

ECUs

• L4Re Framework

with common APIs

enables flexible deploy-

ment of components in

SoC

MCU Virtualization - The L4Re Micro Hypervisor / Copyright  © 2023 by Kernkonzept

Deploying such value-added functions
directly to the storage controller maxi-
mizes performance while driving
down power consumption and overall
hardware costs. However, it requires
proper separation of the core real-time
storage controller functions from the
use case specific data processing. This
separation is provided by the L4Re
Hypervisor.

The L4Re Hypervisor has been adapted
to run on Armv8-R AArch64, including
the upcoming Cortex-R82 processor
that enables such a use case. Building
on the foundation of the field-tested
Armv8-A L4Re Hypervisor, the L4Re
Framework runs multiple Linux VMs
and ensures the proper isolation of the
storage RTOS on Armv8-R as well. De-
pending on the requirements it might
even include dynamic provisioning of
the user VMs.

3.3.3 Use Case: Storage Controller

Storage controllers are gaining more
computational resources with every
new generation. This has led to the re-
quirement to move to 64-bit architec-
tures to keep up with the required
memory capacity. Likewise, the increa-
singly complex functions that need to
be deployed on the storage controllers
require more sophisticated operating
systems, such as Linux.

Computational storage is a trend that
takes this development even further,
by deploying data processing functions
directly into the storage controller (see
Figure 10). The unique property of
such a system is that real-time functio-
nality is co-located next to general pur-
pose, throughput optimized workloads
on the same CPU.

Figure 10: Storage Controller Use Case employing real-time and Linux Workloads

• L4Re Hypervisor

separates storage con-

troller functions from

data processing for

computational storage

• L4Re Hypervisor

runs on Armv8-R

AArch64, including

Cortex-R82

• L4Re Framework en-

sures isolation of sto-

rage RTOS on Armv8-R

VMM VMM

Storage
Controller

RTOS

Data Analytics
Linux

Flash Module Ethernet Network

High-Performance
Data Access Path

L4Re Hypervisor

14 of 15

MCU Virtualization - The L4Re Micro Hypervisor / Copyright  © 2023 by Kernkonzept

The L4Re Operating System and Hy-
pervisor Framework provides the
technology to cover the whole spec-
trum of ARMv8-R virtualization. By
leveraging the same APIs on both
ends of the resource spectrum, appli-
cations can be deployed with no or
only minimal changes on the whole
spectrum. As systems are evolving
and gaining more resources and
capabilities, the L4Re architecture
provides a safe upgrade path, econo-
mizing investments in the software
stack.

By deploying both the L4Re Hy-
pervisor and the L4Re Micro Hypervi-
sor alongside each other, you further
reduce complexity for designers and
developers.

With the L4Re Operating System
Frame-work, especially the combined
use of L4Re Hypervisor and L4Re
Micro Hypervisor for MPU, the objec-
tives of consolidation and safety can
be pursued simultaneously with a
solution with uniform APIs and
allowing full scalability.

The modular microkernel approach
is key to enabling certification of
systems, according to functional
safety as well as security standards
such as Common Criteria EAL. The
L4Re Micro Hypervisor provides
the foundation to build certifiable,
virtualized safety systems on the
ARMv8-R technology. The small code
base minimizes effort and time for
certification and enables using MPUs
for safety and security purposes in
the first place.

Along with the L4Re Hypervisor for
MMU based systems, L4Re provides
a consistent framework from small,
safety-critical systems up to cloud
server virtualization scenarios.

ADVANCED SAFETY &
SCALABILITY WITH THE
L4Re HYPERVISOR FAMILY

L4Re benefits for

automotive software

design:

• Safe upgrade path in

the software stack

• Reduced complexity

for developers

• Certification-ready

systems, adhering to

functional safety as well

as security standards

like Common Criteria

EAL

• Consistent frame-

work from small MMU-

based to cloud server

and HPC systems

15 of 15

